资源类型

期刊论文 127

会议视频 2

年份

2023 15

2022 15

2021 14

2020 6

2019 6

2018 3

2017 6

2016 7

2015 12

2014 6

2013 3

2012 4

2011 2

2010 3

2009 2

2008 2

2007 2

2006 2

2005 3

2004 1

展开 ︾

关键词

低温铝电解 2

惰性阳极 2

熔态还原 2

钢铁 2

CO2 加氢 1

Fe、Co、Ru 碳化物 1

K 助剂 1

Mn 助剂 1

SiC绝缘侧壁 1

n 型碳纳米管 1

世界经济全 1

中国钢铁工业 1

乳液共聚合 1

产业链 1

亲钠性铋基材料 1

企业信息化 1

元素硫 1

凝胶电解质 1

加压浸出 1

展开 ︾

检索范围:

排序: 展示方式:

Performance of iron-air battery with iron nanoparticle-encapsulated C–N composite electrode

《能源前沿(英文)》 doi: 10.1007/s11708-023-0913-5

摘要: Highly efficient and stable iron electrodes are of great significant to the development of iron-air battery (IAB). In this paper, iron nanoparticle-encapsulated C–N composite (NanoFe@CN) was synthesized by pyrolysis using polyaniline as the C–N source. Electrochemical performance of the NanoFe@CN in different electrolytes (alkaline, neutral, and quasi-neutral) was investigated via cyclic voltammetry (CV). The IAB was assembled with NanoFe@CN as the anode and IrO2 + Pt/C as the cathode. The effects of different discharging/charging current densities and electrolytes on the battery performance were also studied. Neutral K2SO4 electrolyte can effectively suppress the passivation of iron electrode, and the battery showed a good cycling stability during 180 charging/discharging cycles. Compared to the pure nano-iron (NanoFe) battery, the NanoFe@CN battery has a more stable cycling stability either in KOH or NH4Cl + KCl electrolyte.

关键词: energy storage and conversion     metallic composites     nanocomposites     iron-air battery     iron anode    

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

《能源前沿(英文)》 2022年 第16卷 第5期   页码 852-861 doi: 10.1007/s11708-021-0811-7

摘要: Fuel starvation can occur and cause damage to the cell when proton exchange membrane fuel cells operate under complex working conditions. In this case, carbon corrosion occurs. Oxygen evolution reaction (OER) catalysts can alleviate carbon corrosion by introducing water electrolysis at a lower potential at the anode in fuel shortage. The mixture of hydrogen oxidation reaction (HOR) and unsupported OER catalyst not only reduces the electrolysis efficiency, but also influences the initial performance of the fuel cell. Herein, Ti4O7 supported IrOx is synthesized by utilizing the surfactant-assistant method and serves as reversal tolerant components in the anode. When the cell reverse time is less than 100 min, the cell voltage of the MEA added with IrOx/Ti4O7 has almost no attenuation. Besides, the MEA has a longer reversal time (530 min) than IrOx (75 min), showing an excellent reversal tolerance. The results of electron microscopy spectroscopy show that IrOx particles have a good dispersity on the surface of Ti4O7 and IrOx/Ti4O7 particles are uniformly dispersed on the anode catalytic layer. After the stability test, the Ti4O7 support has little decay, demonstrating a high electrochemical stability. IrOx/Ti4O7 with a high dispersity has a great potential to the application on the reversal tolerance anode of the fuel cell.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel starvation     cell reverse     reversal tolerance anode     oxygen evolution reaction    

Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries

《能源前沿(英文)》 2023年 第17卷 第5期   页码 569-584 doi: 10.1007/s11708-023-0875-7

摘要: Lithium (Li) metal is believed to be the “Holy Grail” among all anode materials for next-generation Li-based batteries due to its high theoretical specific capacity (3860 mAh/g) and lowest redox potential (−3.04 V). Disappointingly, uncontrolled dendrite formation and “hostless” deposition impede its further development. It is well accepted that the construction of three-dimensional (3D) composite Li metal anode could tackle the above problems to some extent by reducing local current density and maintaining electrode volume during cycling. However, most strategies to build 3D composite Li metal anode require either electrodeposition or melt-infusion process. In spite of their effectiveness, these procedures bring multiple complex processing steps, high temperature, and harsh experimental conditions which cannot meet the actual production demand in consideration of cost and safety. Under this condition, a novel method to construct 3D composite anode via simple mechanical modification has been recently proposed which does not involve harsh conditions, fussy procedures, or fancy equipment. In this mini review, a systematic and in-depth investigation of this mechanical deformation technique to build 3D composite Li metal anode is provided. First, by summarizing a number of recent studies, different mechanical modification approaches are classified clearly according to their specific procedures. Then, the effect of each individual mechanical modification approach and its working mechanisms is reviewed. Afterwards, the merits and limits of different approaches are compared. Finally, a general summary and perspective on construction strategies for next-generation 3D composite Li anode are presented.

关键词: lithium (Li)-ion battery (LIB)     Li metal battery     three-dimensional (3D) composite Li metal anode     mechanical modification     reducing local current density    

Algal biomass derived biochar anode for efficient extracellular electron uptake from

Yan-Shan Wang, Dao-Bo Li, Feng Zhang, Zhong-Hua Tong, Han-Qing Yu

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1072-5

摘要:

Algal biochar anode produced higher biocurrent compared with graphite plate anode.

Algal biochar exhibited stronger electrochemical response to redox mediators.

Algal biochar showed excellent adsorption to redox mediators.

关键词: Algal biochar     Anode material     Electrochemical activity     Extracellular electron transport     Waste resource utilization    

randomized, controlled, open label non-inferiority trial of intravenous ferric carboxymaltose versus ironsucrose in patients with iron deficiency anemia in China

《医学前沿(英文)》 doi: 10.1007/s11684-023-1001-2

摘要: Iron deficiency (ID) and ID anemia (IDA) pose significant public health concerns in China. Although iron sucrose (IS) treatment is well-established in the country, ferric carboxymaltose (FCM) offers the advantage of higher doses and fewer infusions. This open label, randomized, controlled, non-inferiority trial was conducted at multiple sites in China to compare the outcomes of FCM (maximum of 2 doses, 500 or 1000 mg iron) and IS (up to 11 infusions, 200 mg iron) treatments in subjects with IDA. The primary endpoint was the achievement of hemoglobin (Hb) response (an increase of ≥2 g/dL from baseline) within 8 weeks, whereas secondary endpoints included changes in Hb, transferrin saturation, and serum ferritin levels. Among the 371 randomized subjects, a similar percentage of subjects treated with FCM and IS achieved Hb-response (FCM 99.4%, IS 98.3%), thereby confirming the non-inferiority of FCM compared with IS (difference 1.12 (−2.15, 4.71; 95% confidence interval (CI))). Furthermore, a significantly higher proportion of FCM-treated subjects achieved early Hb-response at Week 2 (FCM 85.2%, IS 73.2%; difference 12.1 (3.31, 20.65; 95% CI)). Additionally, the increase in TSAT and serum ferritin levels from baseline was significantly greater at all time points for FCM-treated subjects. The safety profiles of FCM and IS were comparable, with the exception of transient hypophosphatemia and pyrexia, which are consistent with FCM’s known safety profile. In conclusion, FCM proves to be an efficacious treatment for IDA, providing faster Hb-response and correction of ID with fewer administrations than IS.

关键词: iron deficiency     anemia     intravenous iron     ferric carboxymaltose     iron sucrose     Hb response     early response    

Preparation of biomass-derived carbon loaded with MnO as lithium-ion battery anode for improving its

《化学科学与工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11705-023-2376-y

摘要: Biomass-derived carbon materials for lithium-ion batteries emerge as one of the most promising anodes from sustainable perspective. However, improving the reversible capacity and cycling performance remains a long-standing challenge. By combining the benefits of K2CO3 activation and KMnO4 hydrothermal treatment, this work proposes a two-step activation method to load MnO2 charge transfer onto biomass-derived carbon (KAC@MnO2). Comprehensive analysis reveals that KAC@MnO2 has a micro-mesoporous coexistence structure and uniform surface distribution of MnO2, thus providing an improved electrochemical performance. Specifically, KAC@MnO2 exhibits an initial charge-discharge capacity of 847.3/1813.2 mAh·g–1 at 0.2 A·g–1, which is significantly higher than that of direct pyrolysis carbon and K2CO3 activated carbon, respectively. Furthermore, the KAC@MnO2 maintains a reversible capacity of 652.6 mAh·g–1 after 100 cycles. Even at a high current density of 1.0 A·g–1, KAC@MnO2 still exhibits excellent long-term cycling stability and maintains a stable reversible capacity of 306.7 mAh·g–1 after 500 cycles. Compared with reported biochar anode materials, the KAC@MnO2 prepared in this work shows superior reversible capacity and cycling performance. Additionally, the Li+ insertion and de-insertion mechanisms are verified by ex situ X-ray diffraction analysis during the charge-discharge process, helping us better understand the energy storage mechanism of KAC@MnO2.

关键词: biomass-derived carbon     MnO2     lithium-ion batteries     anode material     high reversible capacity    

Synergistic effects of sodium hypochlorite disinfection and iron-oxidizing bacteria on early corrosionin cast iron pipes

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-021-1506-3

摘要:

• The early corrosion process in the cast iron pipes was investigated.

关键词: Cast iron pipe corrosion     Drinking water distribution systems     Chlorine disinfection     Iron-oxidizing bacteria     Coupling effects    

中国铝工业应用新型电极材料的研究与展望

邱竹贤

《中国工程科学》 2001年 第3卷 第5期   页码 50-54

摘要:

介绍了现代铝工业上新近开发研制的几种电极材料,涉及惰性阴极、惰性阳极、双极性电极等;还研制了低温电解质,使电解温度降低到800~900℃。如果惰性电极与低温电解质配合起来应用,则能够明显减少工业铝生产中的物料消耗,节省电能,增大电解槽生产能力,并改善环境状况,可望大幅度降低生产成本。

关键词: 惰性阳极     惰性阴极     SiC绝缘侧壁     低温铝电解    

Redox reactions of iron and manganese oxides in complex systems

Jianzhi Huang, Huichun Zhang

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1255-8

摘要: • Mechanisms of redox reactions of Fe- and Mn-oxides were discussed. • Oxidative reactions of Mn- and Fe-oxides in complex systems were reviewed. • Reductive reaction of Fe(II)/iron oxides in complex systems was examined. • Future research on examining the redox reactivity in complex systems was suggested. Conspectus Redox reactions of Fe- and Mn-oxides play important roles in the fate and transformation of many contaminants in natural environments. Due to experimental and analytical challenges associated with complex environments, there has been a limited understanding of the reaction kinetics and mechanisms in actual environmental systems, and most of the studies so far have only focused on simple model systems. To bridge the gap between simple model systems and complex environmental systems, it is necessary to increase the complexity of model systems and examine both the involved interaction mechanisms and how the interactions affected contaminant transformation. In this Account, we primarily focused on (1) the oxidative reactivity of Mn- and Fe-oxides and (2) the reductive reactivity of Fe(II)/iron oxides in complex model systems toward contaminant degradation. The effects of common metal ions such as Mn2+ , Ca2+, Ni2+, Cr3+ and Cu2+, ligands such as small anionic ligands and natural organic matter (NOM), and second metal oxides such as Al, Si and Ti oxides on the redox reactivity of the systems are briefly summarized.

关键词: Iron oxides     manganese oxides     reduction     oxidation     complex systems     reaction kinetics and mechanisms    

Mechanical properties of vanadium-alloyed austempered ductile iron for crankshaft applications

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0746-2

摘要: This study focused on the development of austempered ductile iron (ADI) with desirable combination of mechanical properties for crankshaft applications by the combined effect of vanadium (V) alloying and an optimized heat treatment process. The produced unalloyed GGG60, 0.15% V-alloyed GGG60 (V-15), and 0.30% V-alloyed GGG60 samples were subjected to austenitizing at 900 °C for 1 h and subsequent austempering processes at 250, 300, and 350 °C for 15, 30, 60, 90, and 180 min. As a result of these austempering processes, different bainitic structures were obtained, which led to the formation of diverse combinations of mechanical properties. The mechanical properties of the austempered samples were tested comprehensively, and the results were correlated with their microstructures and the stability of the retained austenite phases. From the microstructural observations, the V-alloyed samples exhibited a finer microstructure and a more acicular ferrite phase than unalloyed samples. The V addition delayed the coarsening of the acicular ferrite structures and considerably contributed to the improvement of the mechanical properties of GGG60. Moreover, the X-ray diffraction results revealed that the retained austenite volume and the carbon enrichment of austenite phases in ADI samples were remarkably affected by the addition of vanadium. The increase in volume fraction of retained austenite and its carbon content provided favorable ductility and toughness to V-15, as confirmed by the elongation and impact test results. Consequently, the dual-phase ausferrite microstructure of V-15 that was austempered at 300 °C for 60 min exhibited high strength with substantial ductility and toughness for crankshaft applications.

关键词: austempered ductile iron (ADI)     vanadium alloying     mechanical properties     crankshafts     retained austenite    

Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1358-2

摘要:

• Microbes enhance denitrification under varying DO concentrations and SIF dosages.

关键词: Scrap iron filing     Nitrate removal     Phosphate removal     Mixed culture denitrification     Zero valent iron    

21世纪伊始铝电解工业的新进展

邱竹贤

《中国工程科学》 2003年 第5卷 第4期   页码 41-46

摘要:

21世纪伊始,法国500kA特大型预焙阳极电解槽,以及中国320 kA大型电解槽的出现,标志着铝电解工业的重要新进展。文章从理论上分析了大型电解槽的优越性,论述了减少电解槽的热损失系数,即减少按单位电量核算的热损失量,便是大型槽能够节省电能的理论基础;应用低温铝电解和惰性电极是铝电解工业今后的发展方向。

关键词: 铝电解工业     大型电解槽     低温铝电解     惰性阳极和惰性阴极    

Highly selective and green recovery of lithium ions from lithium iron phosphate powders with ozone

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 749-758 doi: 10.1007/s11705-022-2261-0

摘要: Since lithium iron phosphate cathode material does not contain high-value metals other than lithium, it is therefore necessary to strike a balance between recovery efficiency and economic benefits in the recycling of waste lithium iron phosphate cathode materials. Here, we describe a selective recovery process that can achieve economically efficient recovery and an acceptable lithium leaching yield. Adjusting the acid concentration and amount of oxidant enables selective recovery of lithium ions. Iron is retained in the leaching residue as iron phosphate, which is easy to recycle. The effects of factors such as acid concentration, acid dosage, amount of oxidant, and reaction temperature on the leaching of lithium and iron are comprehensively explored, and the mechanism of selective leaching is clarified. This process greatly reduces the cost of processing equipment and chemicals. This increases the potential industrial use of this process and enables the green and efficient recycling of waste lithium iron phosphate cathode materials in the future.

关键词: lithium iron phosphate powder     stoichiometric number     selective leaching     lithium recovery    

Synthesis of iron(II) complexes with asymmetric N

Wolfgang Bauer, Tanja Ossiander, Birgit Weber

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 400-408 doi: 10.1007/s11705-018-1753-4

摘要:

The synthesis of new Schiff base-like ligands with asymmetric substituents pattern and their iron complexes with pyridine as axial ligand is described. Two of the ligands and one of the iron(II) complexes were characterized by single crystal X-ray structure analysis. One of the the iron(II) complexes shows spin crossover behavior while the others remain in the high spin state. The influence of the reduced symmetry of the ligand on the properties of the complexes is discussed.

关键词: iron     Schiff base-like ligands     magnetism     spin crossover     X-ray structures    

Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst

Alireza MOHAMMADREZAEI, Sadegh PAPARI, Mousa ASADI, Abas NADERIFAR, Reza GOLHOSSEINI

《化学科学与工程前沿(英文)》 2012年 第6卷 第3期   页码 253-258 doi: 10.1007/s11705-012-0902-4

摘要: The effect of iridium and iron impregnation of HZSM-5 zeolite on the methanol to propylene reaction (MTP) was investigated. The selectivities of propylene and other hydrocarbons, and the conversion of methanol were compared by performing MTP in a small pilot plant. The results indicate that HZSM-5 zeolite modified by iron and iridium increased propylene selectivity by 6.3% and 8%, respectively. The selectivity of propylene was higher for Ir/H-ZSM-5 than for Fe/H-ZSM-5, where Fe/H-ZSM-5 was more stable than Ir/H-ZSM-5. Analytic techniques, including X-ray diffraction, BET surface area, temperature-programmed desorption of ammonia, and inductively coupled plasma atomic emission spectroscopy, were used to characterize the modified zeolites as well as the parent zeolites.

关键词: HZSM-5     promoter     iridium     iron     MTP    

标题 作者 时间 类型 操作

Performance of iron-air battery with iron nanoparticle-encapsulated C–N composite electrode

期刊论文

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

期刊论文

Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries

期刊论文

Algal biomass derived biochar anode for efficient extracellular electron uptake from

Yan-Shan Wang, Dao-Bo Li, Feng Zhang, Zhong-Hua Tong, Han-Qing Yu

期刊论文

randomized, controlled, open label non-inferiority trial of intravenous ferric carboxymaltose versus ironsucrose in patients with iron deficiency anemia in China

期刊论文

Preparation of biomass-derived carbon loaded with MnO as lithium-ion battery anode for improving its

期刊论文

Synergistic effects of sodium hypochlorite disinfection and iron-oxidizing bacteria on early corrosionin cast iron pipes

期刊论文

中国铝工业应用新型电极材料的研究与展望

邱竹贤

期刊论文

Redox reactions of iron and manganese oxides in complex systems

Jianzhi Huang, Huichun Zhang

期刊论文

Mechanical properties of vanadium-alloyed austempered ductile iron for crankshaft applications

期刊论文

Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture

期刊论文

21世纪伊始铝电解工业的新进展

邱竹贤

期刊论文

Highly selective and green recovery of lithium ions from lithium iron phosphate powders with ozone

期刊论文

Synthesis of iron(II) complexes with asymmetric N

Wolfgang Bauer, Tanja Ossiander, Birgit Weber

期刊论文

Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst

Alireza MOHAMMADREZAEI, Sadegh PAPARI, Mousa ASADI, Abas NADERIFAR, Reza GOLHOSSEINI

期刊论文